
MECHANISMS OF PHOTOCHEMICAL REACTIONS OF TRANSITION METAL COMPLEXES: EXCI..(U) MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF CHEMISTRY M S HRIGHTON 20 MAR 84 TR-42-ONR N00014-75-C-0880 F/G 7/5 AD-A140 006 1/1 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU-OF STANDARDS-1963-A

SECURITY CLASSIFICATION OF THIS PAGE (When Dat - Enter & READ INSTRUCTIONS
BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE I. REPORT NUMBER 2. GOVT ACCESSION NO. ONR-TR 42 4. TITLE (and Subility)
"Mechanisms of Photochemical Reactions of Transition 5. TYPE OF REPORT & PERIOD COVERED Metal Complexes: Excited State Electron Transfer and Interim Technical Report Organometallic Photochemistry" 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) . CONTRACT OR GRANT NUMBER(#) Mark S. Wrighton N00014-75-C-0880 PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, AREA & WORK UNIT NUMBERS Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts NR-051-579 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Office of Naval Research March 20, 1984 Department of the Navy 13. NUMBER OF PAGES Arlington, Virginia 22217 15. SECURITY CLASS. (of this report) 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Unclassified

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; reproduction is permitted for any purpose of the United States Government; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different from Report)

Distribution of this document is unlimited.

APR 1 0 1984

15a. DECLASSIFICATION/DOWNGRADING

18. SUPPLEMENTARY NOTES

Prepared for publication in 25th Anniversary issue of the Journal of Photochemistry.

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)
photochemistry, organometallic chemistry, transition metals, electron
transfer

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This article summarizes two major areas of research, electron transfer and organometallic photochemistry, addressed during the last dozen or so years. The article emphasizes aspects of the mechanisms of photochemical reactions of transition metal complexes in these two areas. Excited state electron transfer and photoreactions of organometallic complexes have been, and will be, major areas of research opportunity. Practical applications may come in the fields of energy conversion and catalysis,

DD 1 JAN 73 1473

Edition of \$ nov 65 is obsolete

UNCLASSIFIED

34"04"09 107

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entere

OFFICE OF NAVAL RESEARCH

CONTRACT NOO014-75-C-0880

Task No. NR 051-579

TECHNICAL REPORT NO. 42

Children controls designed the controls

一年日本は大学

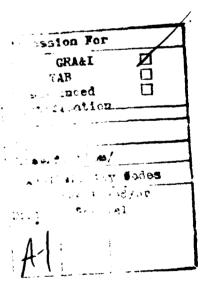
"MECHANISMS OF PHOTOCHEMICAL REACTIONS OF TRANSITION METAL COMPLEXES:
EXCITED STATE ELECTRON TRANSFER AND ORGANOMETALLIC PHOTOCHEMISTRY"

by

Mark S. Wrighton

Prepared for Publication

in


The Journal of Photochemistry

Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

March 20, 1984

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

MECHANISMS OF PHOTOCHEMICAL REACTIONS OF TRANSITION METAL COMPLEXES:

EXCITED STATE ELECTRON TRANSFER AND ORGANOMETALLIC PHOTOCHEMISTRY

MARK S. WRIGHTON

Department of Chemistry

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139 (USA)

100

STATE OF THE STATE OF

الإجراء والمراجع المراجع المحروجين المحروجين المحروجين

Abstract: This article summarizes two major areas of research, electron transfer and organometallic photochemistry, addressed during the last dozen or so years. The article emphasizes aspects of the mechanisms of photochemical reactions of transition metal complexes in these two areas. Excited state electron transfer and photoreactions of organometallic complexes have been, and will be, major areas of research opportunity. Practical applications may come in the fields of energy conversion and catalysis.

Inorganic photochemistry is a field that once focused on the substitution and redox chemistry of Werner complexes in aqueous media. Now, the field includes significant contributions involving many classes of compounds involving many different types of one-electron excited states. In this retrospective view I shall focus on two areas of the field where remarkable progress has been made and where much can be expected in the future: excited state electron transfer and organometallic photochemistry.

Electron Transfer To and From Photoexcited Metal Complexes. The fact that a photoexcited molecule can be a more potent oxidant and a more potent reductant than the ground state can, in principle, be exploited to effect the conversion of light to chemical and/or electrical energy. No additional evidence beyond the knowledge that natural photosynthesis works is needed to establish that photochemical energy conversion is a practical possibility. For inorganic photochemists a 1972 report³ by A.W. Adamson and H.D. Gafney on $Ru(bpy)_3^{2+}$ (bpy = 2,2'-bipyridine) can be regarded as the initial stimulation for an enormous thrust in research of excited state electron transfer reactions of

metal complexes. Much of the research has been carried out with the hope of being able to sensitize the oxidation and reduction of H_2O to effect the generation of fuel (H_2 and O_2) from H_2O and sunlight. The research has involved some of the most active groups in inorganic photochemistry and many reviews have appeared from these groups in recent years. $^{4-9}$

The research of excited state electron transfer of metal complexes has involved not only $Ru(bpy)_3^{2+}$ and related Os species, but also complexes having metal-metal bonds such as $Re_2Cl_8^{2-10}$ and $Ph_3SnRe(CO)_3(1,10'-phenanthroline),^{11}$ as well as high nuclearity systems such as $Mo_6Cl_{4}^{2-12}$. A feature that these systems have in common is that the lowest excited state is relatively long-lived and generally emissive in fluid solution at room temperature. The long lifetime is essential to the ability to efficiently quench the excited species in a bimolecular reaction, equation (1a) or (1b). The discovery of a large number of

$$M^{+} + Q_{1} \longrightarrow M^{+} + Q_{1}^{-}$$
 (1a)

$$M^* + Q_2 \rightarrow M^- + Q_2^+$$
 (1b)

long-lived photoexcited transition metal complexes in the past dozen years has been crucial to the development of the present understanding of the various excited state processes in general, and in particular, has allowed the detailed investigation of bimolecular electron transfer reactions.

COLON POSSESSION CASES LANDRING SCHOOLS

Studies of the electron transfer quenching of excited metal complexes has revealed a great deal about the properties of the metal complexes, but there has been only limited success in sensitizing the sustained formation of high energy redox products such as H₂ and O₂ from H₂O. Generally, the excited complexes are only one-electron transfer reagents, while the desired products require more than one electron per molecule formed. The basic difficulty stems from the fact

that the ultimate formation of energy-rich redox products involves a primary one-electron step as in equation (1a) or (1b). The primary products $M^+ + Q_1^-$ or $M^- + Q_2^+$ are thermodynamically unstable as desired, but unfortunately, the primary products are generally labile and react rapidly according to equations (2a) and (2b). So-called back reactions of this kind degrade optical energy to

$$M^+ + Q_1^- \longrightarrow M + Q_1 + heat$$
 (2a)

$$M^- + Q_2^+ \longrightarrow M + Q_2 + heat$$
 (2b)

heat. There are many schemes where a sacrificial reagent such as EDTA allows the generation of H_2 as in equations (3)-(6). In this scheme MV^{2+} is N,N'-dimethyl-

$$Ru(bpy)_3^{2+} \xrightarrow{h\nu} [Ru(bpy)_3^{2+}]^*$$
 (3)

$$[Ru(bpy)_3^{2+}]^* + MV^{2+} \rightarrow MV^+ + Ru(bpy)_3^{3+}$$
 (4)

$$Ru(bpy)_3^{3+} + EDTA \longrightarrow Ru(bpy)_3^{2+} + oxidation product(s)$$
 (5)

$$MV^{+} + H^{+} \xrightarrow{\text{catalyst}} MV^{2+} + 1/2H_{2}$$
 (6)

4,4'-bipyridinium and the catalyst can be a high surface area suspension of Pt. In this complicated, but now familiar, scheme the EDTA is irreversibly oxidized by the primary, photogenerated oxidant $Ru(bpy)_3^{3+}$ to regenerate $Ru(bpy)_3^{2+}$, precluding back reaction with the reductant MV⁺ that can be used to generate H₂ via a catalyzed process, equation (6). Unfortunately, H₂ generation occurs at the expense of EDTA. In such a case it is not even evident that the net sensitized reaction is an overall up-hill process.

ARRAGAM ARRAMAN INTERNATIONAL MARKANINA

The Ru(bpy)3³⁺ formed in the quenching step, equation (4), is a sufficiently potent oxidant that H₂O could be oxidized to O₂, but this four-electron process, like H₂ evolution, requires catalysis. A catalyst system that will

services the secretary becomes the second of

allow the use of H₂O as the only sacrificial reagent in the photosensitized formation of H₂ and O₂ has not yet been devised. The photosynthetic system uses CO₂ and H₂O as sacrificial reagents to effect formation of reduced carbon compounds and O₂. A key to the efficiency of the photosynthetic system is likely the structured arrangement of the components of the photosynthetic apparatus that cannot be imitated by homogeneously dissolved complexes. The natural apparatus is arranged such that back reaction of early high-energy redox products is inhibited. Transition metal complexes that efficiently absorb light and undergo electron transfer processes to give energetic redox products exist. But inhibiting back reaction has not been achieved with molecular-based systems. This problem is of paramount significance and is the key to success in photochemical energy conversion. Future work will likely be directed toward interfacial systems where some success has already been realized, as at semiconductor/liquid electrolyte interfaces. 13

While the practical objective of energy conversion has not yet been realized, the area of excited state electron transfer will remain active in order to continue the establishment of the basic properties of excited states. Additional application areas may include imaging systems and stoichiometric synthesis, both of which may prove easier to achieve than largescale energy conversion systems. In many situations it will be necessary to synthesize organized assemblies, in order to achieve desired results; this will be especially important to achieve efficient photochemical energy conversion.

Organometallic Photochemistry. Organometallic complexes have been the object of intense study in several major research groups. Much of the work has been carried out with the underlying objective of synthesizing new catalysts and reactive intermediates. The photoinduced reductive elimination of H₂ from di- and polyhydrides to generate coordinatively unsaturated species (typically

Additionally, M-M bond cleavage has been established as a general photoreaction class for complexes having 2 e⁻ M-M bonds, 15 e.g. $\rm Mn_2(CO)_{10}$, to give 17 e⁻ radicals and more recently 15 e⁻ radicals from Pd-Pd cleavage in $\rm Pd_2(CNR)_6^{2+}.^{16}$ However, as for many classical Werner complexes, 1 ligand photosubstitution of organometallic complexes, and especially of metal carbonyls, has been the most active area of organometallic photochemistry. 17 In the case of organometallic-complexes, though, the photosubstitution chemistry is being extended to the study of high nuclearity clusters such as $\rm H_4Ru_4(CO)_{12}.^{18}$ Two of the dominant themes in organometallic photochemistry that will continue to thrive are low temperature photochemistry and catalysis.

The application of low temperature matrix photochemistry techniques to organometallic complexes has proven fruitful in characterizing photogenerated intermediates and in establishing mechanisms of photochemical reactions at room temperature. Early experiments concerned the study of M(CO)₆ by R.K. Sheline and co-workers. ¹⁹ In the early 1970's J.J. Turner and his co-workers made significant contributions showing that a large number of mononuclear metal carbonyls, XYM(CO)_n, lose CO to give coordinatively unsaturated, typically 16 e-, complexes, XYM(CO)_{n-1}, that can be spectroscopically characterized in rigid matrices. ²⁰ Many additional reports have followed that directly establish the nature of the intermediates in room temperature photoreactions. ²¹ Recent attention has turned to di-, ²² tri-, ²³ and tetranuclear ¹⁸ clusters with the first examples of the photogeneration of coordinative unsaturation in higher nuclearity clusters. These results are of possible consequence due to the belief that clusters may serve as models for heterogeneous metallic catalysts.

AND THE STATE OF THE PROPERTY OF THE PROPERTY

The combination of low temperature photolysis followed by warm-up can lead to direct observation of the elementary steps in a room temperature

photoreaction. A simple example is to warm a photogenerated 16 e⁻ species in the presence of a 2 e⁻ donor ligand to observe the generation of a net photosubstitution product. The unimolecular reaction represented by equation (7) has

$$(\eta^5-C_5H_5)W(CO)_3C_2H_5 \xrightarrow{h\nu} trans-(\eta^5-C_5H_5)W(CO)_2(C_2H_4)(H) + CO$$
 (7)

been shown²⁴ to proceed via primary loss of CO to give a 16 e⁻ species that can be detected at 77 K. The 16 e⁻ species gives the final product thermally upon warming to 196 K with a $t_{1/2} \approx 10$ s. Such chemistry can also be monitored when the organometallic species is anchored to a surface.²⁵ The exciting prospect for surface-bound molecules is that it may be possible to selectively generate active sites on surfaces and to study interfacial reactions with molecular specificity. In a more complex situation, the bimolecular photochemistry represented by equation (8) has been shown²⁶ to proceed via (i) photochemical loss of CO,

THE PARTY PROPERTY PROPERTY OF THE PARTY PROPERTY OF THE PARTY PROPERTY PROPERTY PROPERTY PROPERTY.

Et₃SiCo(CO)₄ + Ph₃SiH
$$\xrightarrow{h\nu}$$
 Ph₃SiCo(CO)₄ + Et₃SiH (8)

(ii) thermal oxidative addition of Ph₃SiH, (iii) thermal reductive elimination of Et₃SiH, and (iv) thermal uptake of CO. Each of the intermediates has been observed spectroscopically. Such systems establish that relatively complex photoreaction mechanisms can be established. It is likely that the methodology can be used to establish the viability of catalytic cycles. The essential is that there be a thermally inert, but photolabile precursor to each proposed intermediate. A start has been made in the observation of all intermediates in the Fe(CO)₅-photocatalyzed isomerization of alkenes,²⁷ and in catalyzed reactions of alkynes using carbene complexes.²⁸

Concerning catalysis, it is worth noting the application of organometallic photochemistry in the discovery of the first examples of addition of simple alkanes, RH, to discrete metal complexes, equations (9)²⁹ and (10).³⁰ These

$$(\eta^{5}-C_{5}Me_{5})Ir(PMe_{3})(H)_{2} \xrightarrow{h\nu} (\eta^{5}-C_{5}Me_{5})Ir(PMe_{3})(R)(H) + H_{2}$$
 (9)

$$(\eta^5-C_5Me_5)Ir(CO)_2 \xrightarrow{h\nu} (\eta^5-C_5Me_5)Ir(CO)(R)(H) + CO$$
 (10)

reactions proceed, presumably, via primary loss of H_2 and CO, respectively, to give very active $16\ e^-$ species. These systems may provide the basis for photochemical functionalization of alkanes.

The future of organometallic photochemistry is bright. New, detailed understanding of electronic structure of complexes having unusual geometrical structures will lead to new photochemistry in that new intermediates can be generated from the common ligand extrusion or metal-metal bond cleavage reactions. Additionally, the application of fast kinetic techniques, especially those employing molecular specific diagnostics, in this area will prove very fruitful in unravelling mechanisms of stoichiometric and catalytic reactions. A conscious effort to discover new photoreactions will likely be very fruitful inasmuch as there are major classes of organometallic complexes that have not been systematically investigated.

<u>Acknowledgements.</u> Work carried out in the author's laboratory cited in the references was supported in part by the National Science Foundation and the Office of Naval Research.

estates described between leasures arrests

References

- 1. (a) Balzani, W.; Carassiti, V. "Photochemistry of Coordination Compounds", Academic Press: New York, 1970; (b) Adamson, A.W.; Flaischauer, P.D., eds., "Concepts of Inorganic Photochemistry", Wiley: New York, 1975.
- 2. See, for example, J. Chem. Ed., 1983, 60, pp. 784-887, for a series of papers on the state of the art in inorganic photochemistry.
- 3. Gafney, H.D.; Adamson, A.W. J. Am. Chem. Soc., 1972, 94, 8238.
- 4. Sutin, N.; Creutz, C. Pure Appl. Chem., 1980, 52, 2717.
- 5. Meyer, T.J. ACS Symp. Ser., 1983, 211, 157, Inorganic Chemistry: Toward the 21st Century, M.H. Chisholm, ed., American Chemical Society, Washington, D.C.
- 6. Balzani, V.; Bolletta, F.; Gandolfi, M.T.; Maestri, M. Top. Curr. Chem., 1978, 75, 1.
- 7. Whitten, D.G. Acc. Chem. Res., 1980, 13, 83.
- 8. Grätzel, M. Acc. Chem. Res., 1981, 14, 376.
- 9. (a) Rice, S.F.; Milder, S.J.; Gray, H.B.; Goldbeck, R.A.; Kliger, D.S. Coord. Chem. Rev., 1982, 43, 349; (b) Gray, H.B.; Maverick, A.W. Science, 1981, 214, 1201.
- 10. Nocera, D.G.; Gray, H.B. <u>J. Am. Chem. Soc.</u>, <u>1981</u>, <u>103</u>, 7349.
- 11. Luong, J.C.; Faltynek, R.A.; Wrighton, M.S. <u>J. Am. Chem. Soc.</u>, 1980, 10, 7892.
- 12. (a) Maverick, A.W.; Gray, H.B. J. Am. Chem. Soc., 1981, 103, 1298; (b) Maverick, A.W.; Najdzionek, J.S.; MacKenzie, D.; Nocera, D.G.; Gray, H.B. ibid., 1983, 105, 1878.
- 13. Wrighton, M.S. ACS Symp. Ser., 1983, 211, 59, "Inorganic Chemistry: Toward the 21st Century", M.H. Chisholm, ed., American Chemical Society, Washington, D.C.
- 14. Geoffroy, G.L.; Bradley, M.G.; Pierantozzi, R. Adv. Chem. Ser., 1978, 167, 181.
- 15. Wrighton, M.S. ACS Symp. Ser., 1981, 155, 85, "Reactivity of Metal-Metal Bonds", M.H. Chisholm, ed., American Chemical Society, Washington, D.C.
- 16. Miller, T.D.; St. Clair, M.A.; Reinking, M.K.; Kubiak, C.P. Organometallics, 1983, 2, 767.
- 17. Jeoffroy, G.L.; Wrighton, M.S. "Organometallic Photochemistry", Academic Press: New York, 1979.
- 18. (a) Graff, J.L.; Wrighton, M.S. J. Am. Chem. Soc., 1980, 102, 2123; (b) Bentsen, J.G.; Wrighton, M.S., submitted for publication.

- 19. Stolz, I.W.; Dobson, G.R.; Sheline, R.K. <u>J. Am. Chem. Soc.</u>, <u>1962</u>, <u>84</u>, <u>3589</u>; <u>1963</u>, <u>85</u>, 1013.
- 20. Turner, J.J. ACS Symp. Ser., 1983, 211, 35, "Inorganic Chemistry: Toward the 21st Century", M.H. Chisholm, ed., American Chemical Society, Washington, D.C.
- 21. Recent examples include: (a) Sweany, R.L. J. Am. Chem. Soc., 1981, 103, 2410; 1982, 104, 3739 and Inorg. Chem., 1982, 22, 752; (b) Gerhartz, W.; Ellerhorst, G.; Dahler, P.; Eilbracht, P. Liebigs Ann. Chem., 1980, 1296; (c) Ellerhorst, G.; Gerhartz, W.; Grevels, F.-W. Inorg. Chem., 1980, 19, 67; (d) Mahmoud, K.A.; Marayanaswamy, R.; Rest, A.J. J. Chem. Soc. Dalton, 1981, 2199.
- 22. (a) Hepp, A.F.; Wrighton, M.S. J. Am. Chem. Soc., 1983, 105, 5934; (b) Hepp, A.F.; Paw-Blaha, J.; Lewis, C.; Wrighton, M.S. Organometallics, 1984, 3, 174; (c) Hooker, R.H.; Rest, A.J. J. Chem. Soc. Chem. Commun., 1983, 1022.
- '23. Bentsen, J.G.; Wrighton, M.S. Inorg. Chem., 1984, 23, 512.

W. 1. 10. 1

Section Section

SECTION DITTILL DILLEGE DILEGES SECTION

- 24. Kazlauskas, R.J.; Wrighton, M.S. <u>J. Am. Chem. Soc.</u>, 1982, 104, 6005.
- 25. Klein, B.; Kazlauskas, R.J.; Wrighton, M.S. Organometallics, 1982, 1, 1338.
- 26. Anderson, F.R.; Wrighton, M.S. <u>J. Am. Chem. Soc.</u>, 1984, 106, 995.
- 27. Mitchener, J.C.; Wrighton, M.S. <u>J. Am. Chem. Soc.</u>, <u>1983</u>, <u>105</u>, 1065.
- 28. Foley, H.C.; Strubinger, L.M.; Targos, T.S.; Geoffroy, G.L. J. Am. Chem. Soc., 1983, 105, 3064.
- 29. Bergman, R.G.; Janowicz, A.N. <u>J. Am. Chem. Soc.</u>, 1983, 105, 3929 and 1982, 104, 352.
- 30. Hoyamo, J.K.; Graham, W.A.G. <u>J. Am. Chem. Soc.</u>, 1982, 104, 3723.

TECHNICAL REPORT DISTRIBUTION LIST, 051A

Dr. M. A. El-Sayed Department of Chemistry University of California Los Angeles, California 90024

Dr. E. R. Bernstein Department of Chemistry Colorado State University Fort Collins, Colorado 80521

Dr. J. R. MacDonald Chemistry Division Naval Research Laboratory Code 6110 Washington, D.C. 20375

Dr. G. B. Schuster Chemistry Department University of Illinois Urbana, Illinois 61801

Dr. A. Adamson
Department of Chemistry
University of Southern California
Los Angeles, California 90007

Dr. M. S. Wrighton
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. A. Paul Schaap Department of Chemistry Wayne State University Detroit, Michigan 49207

Dr. Gary Bjorklund IBM 5600 Cottle Road San Jose, California 95143

Dr. Kent R. Wilson Chemistry Department University of California La Jolla, California 92093

Dr. G. A. Crosby Chemistry Department Washington State University Pullman, Washington 99164 Dr. R. Hautala Chemical Research Division American Cyanamid Company Bound Brook, New Jersey 08805

Dr. J. I. Zink
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. D. M. Burland IBM San Jose Research Center 5600 Cottle Road San Jose, California 95143

Dr. John Cooper Code 6130 Naval Research Laboratory Washington, D.C. 20375

Dr. W. M. Jackson Department of Chemistry Howard University Washington, D.C. 20059

Dr. George E. Walrafen Department of Chemistry Howard University Washington, D.C. 20059

Dr. Joe Brandelik AFWAL/AADO-1 Wright Patterson AFB Fairborn, Ohio 45433

Dr. Carmen Ortiz Cousejo Superior de Investigaciones Cientificas Serrano 117 Madrid 6, SPAIN

Dr. John J. Wright
Physics Department
University of New Hampshire
Durham, New Hampshire 03824

TECHNICAL REPORT DISTRIBUTION LIST, GEN

<u>c</u>	No. Copies		No. Copies
Office of Naval Research Attn: Code 413 800 N. Quincy Street Arlington, Virginia 22217	2	Naval Ocean Systems Center Attn: Technical Library San Diego, California 92152	1
ONR Pasadena Detachment Attn: Dr. R. J. Marcūs 1030 East Green Street Pasadena, California 91106	1	Naval Weapons Center Attn: Dr. A. B. Amster Chemistry Division China Lake, California 93555	. 1
Commander, Naval Air Systems Command Attn: Code 310C (H. Rosenwasser) Washington, D.C. 20360	1	Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380	1
Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93401	1 .	Dean William Tolles Naval Postgraduate School Monterey, California 93940	1
Superintendent Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375	1	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 2770	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12	Mr. Vincent Schaper DTNSRDC Code 2830 Annapolis, Maryland 21402	1
DTNSRDC Attn: Dr. G. Bosmajian Applied Chemistry Division Annapolis, Maryland 21401		Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 1911	1
Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1	Mr. A. M. Anzalone Administrative Librarian PLASTEC/ARRADCOM Bldg 3401 Dover, New Jersey 07801	1

5-6-